skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1910284

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The landscape of western North America has dramatically transformed since the Miocene to become increasingly heterogeneous, in turn promoting the evolution of many rapidly radiating angiosperm lineages. Phylogenetic relationships of these recently and rapidly radiating groups are difficult to resolve as there is little genetic variation among species and a high degree of noise from incomplete lineage sorting and hybridization. Mentzelia section Bartonia (51 species; Loasaceae) exemplifies this problem well. The clade has been investigated with Sanger sequencing, RADSeq, and genome skimming methods, however, most species relationships remain elusive due to low genetic variability. To better infer species relationships, we applied a hybrid enrichment approach with the Angiosperms353 probe set and implemented a novel bioinformatics workflow that aimed to maximize phylogenetic signal and minimize noise from low-quality sequences, paralogy, and incomplete lineage sorting. Our phylogenomic approach increased phylogenetic resolution of species relationships compared to previous studies based on nrDNA loci. Although a few species relationships still lack strong support, our results indicate that our methods were effective in phylogenetic inference of this recently and rapidly evolving lineage from western North America. To better characterize major groups in the Section, we propose the formal designation of three subsections: Decapetala, Multicaulis, and Multiflora. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  2. Abstract We report the results from a pilot study to search for black holes and other dark companions in binary systems using direct imaging with SHARK-VIS and the iLocater pathfinder “Lili” on the Large Binocular Telescope. Starting from known single-lined spectroscopic binaries, we select systems with high mass functions that could host dark companions and whose spectroscopic orbits indicate a projected orbital separation ≥30 mas. For this first exploration, we selected four systems (HD 137909, HD 104438, HD 117044, and HD 176695). In each case, we identify a luminous companion and measure the flux ratio and angular separation. However, two of the systems (HD 104438 and HD 176695) are not consistent with simple binary systems and are most likely hierarchical triples. The observed companions rule out a massive compact object for HD 137909, HD 117044, and HD 176695. HD 104438 requires further study because the identified star cannot be responsible for the RV orbit and is likely a dwarf tertiary companion. The SHARK-VIS observation was taken near pericenter, and a second image near apocenter is needed to discriminate between a closely separated luminous secondary and a compact object. When a luminous companion is found, the combination of the RVs and the single SHARK-VIS observation strongly constrains the orbital inclination and the companion mass. Since a single SHARK-VIS observation has a typical on-source observing time of only ∼10 minutes, this a promising method to efficiently identify non-interacting compact object candidates. 
    more » « less
    Free, publicly-accessible full text available February 28, 2026
  3. Abstract Observations of GeV gamma-ray emission from the well-studied mixed-morphology supernova remnant (SNR) W44 by Fermi-Large Area Telescope and AGILE imply that it is a site of significant cosmic-ray acceleration. The spectral energy distribution (SED) derived from the GeV data suggests that the gamma-ray emission likely originates from the decay of neutral pions generated by cosmic-ray interactions. It is essential to measure the SED of W44 in the X-ray and very-high-energy (VHE) gamma-ray bands to verify the hadronic origin of the emission and to gauge the potential contributions from leptonic emission. We report an upper limit of the nonthermal X-ray flux from W44 of 5  × 10−13erg cm−2s−1in the 0.5–8.0 keV band based on  ∼300 ks of XMM-Newton observations. The X-ray upper limit is consistent with previously estimated hadronic models, but in tension with the leptonic models. We estimate the VHE flux upper limit of  ∼1.2  × 10−12erg s−1cm−2in the 0.5–5.0 TeV range from W44 using data from the Very Energetic Radiation Imaging Telescope Array System. Our nondetection of W44 at VHE wavelengths is in agreement with observations from other imaging atmospheric Cherenkov telescopes and is perhaps consistent with the evolutionary stage of the SNR. 
    more » « less
    Free, publicly-accessible full text available April 8, 2026
  4. Abstract Pulsar halos are regions around middle-aged pulsars extending out to tens of parsecs. The large extent of the halos and well-defined central cosmic-ray accelerators make this new class of Galactic sources an ideal laboratory for studying cosmic-ray transport. LHAASO J0621+3755 is a candidate pulsar halo associated with the middle-aged gamma-ray pulsar PSR J0622+3749. We observed LHAASO J0621+3755 with VERITAS and XMM-Newton in the TeV and X-ray bands, respectively. For this work, we developed a novel background estimation technique for imaging atmospheric Cherenkov telescope observations of such extended sources. No halo emission was detected with VERITAS (0.3–10 TeV) or XMM-Newton (2–7 keV) within 1and 1 0 around PSR J0622+3749, respectively. Combined with the LHAASO Kilometer Square Array (KM2A) and Fermi-LAT data, VERITAS flux upper limits establish a spectral break at  ∼1–10 TeV, a unique feature compared with Geminga, the most studied pulsar halo. We model the gamma-ray spectrum and LHAASO-KM2A surface brightness as inverse Compton emission and find suppressed diffusion around the pulsar, similar to Geminga. A smaller diffusion suppression zone and harder electron injection spectrum than Geminga are necessary to reproduce the spectral cutoff. A magnetic field ≤1μG is required by our XMM-Newton observation and synchrotron spectral modeling, consistent with Geminga. Our findings support slower diffusion and lower magnetic field around pulsar halos than the Galactic averages, hinting at magnetohydrodynamic turbulence around pulsars. Additionally, we report the detection of an X-ray point source spatially coincident with PSR J0622+3749, whose periodicity is consistent with the gamma-ray spin period of 333.2 ms. The soft spectrum of this source suggests a thermal origin. 
    more » « less
    Free, publicly-accessible full text available May 15, 2026
  5. Free, publicly-accessible full text available February 1, 2026
  6. We used Manna’s theory on borrowing strength to examine the influence of local and national idea champions seeking to broaden the participation of K-12 students in computer science. Concepts from Manna’s model were applied to analyze interview data gathered from idea champions at the national and local levels. We identified examples of borrowing strength that not only highlighted the importance of individual policy entrepreneurs but also elevated the importance of community building. We introduce the concept of building strength to highlight how idea champions strategically supported capacity-building activities at a different level in the federal system prior to borrowing strength. 
    more » « less
  7. Magnetically trapped antihydrogen atoms can be cooled by expanding the volume of the trap in which they are confined. We report a proof-of-principle experiment in which antiatoms are deliberately released from expanded and static traps. Antiatoms escape at an average trap depth of 0.08 ± 0.01 K (statistical errors only) from the expanded trap while they escape at average depths of 0.22 ± 0.01 and 0.17 ± 0.01 K from two different static traps. (We employ temperature-equivalent energy units.) Detailed simulations qualitatively agree with the escape times measured in the experiment and show a decrease of 38 % (statistical error < 0.2 % ) in the mean energy of the population after the trap expansion without significantly increasing antiatom loss compared to typical static confinement protocols. This change is bracketed by the predictions of one-dimensional and three-dimensional semianalytic adiabatic expansion models. These experimental, simulational, and model results are consistent with obtaining an adiabatically cooled population of antihydrogen atoms that partially exchanged energy between axial and transverse degrees of freedom during the trap expansion. This result is important for future antihydrogen gravitational experiments which rely on adiabatic cooling, and it will enable antihydrogen cooling beyond the fundamental limits of laser cooling. Published by the American Physical Society2024 
    more » « less
  8. The timing of sea ice retreat and advance in Arctic coastal waters varies substantially from year to year. Various activities, ranging from marine transport to the use of sea ice as a platform for industrial activity or winter travel, are af- fected by variations in the timing of breakup and freeze-up, resulting in a need for indicators to document the regional and temporal variations in coastal areas. The primary objec- tive of this study is to use locally based metrics to construct indicators of breakup and freeze-up in the Arctic and subarc- tic coastal environment. The indicators developed here are based on daily sea ice concentrations derived from satellite passive-microwave measurements. The “day of year” indica- tors are designed to optimize value for users while building on past studies characterizing breakup and freeze-up dates in the open pack ice. Relative to indicators for broader adja- cent seas, the coastal indicators generally show later breakup at sites known to have landfast ice. The coastal indicators also show earlier freeze-up at some sites in comparison with freeze-up for broader offshore regions, likely tied to ear- lier freezing of shallow-water regions and areas affected by freshwater input from nearby streams and rivers. A factor analysis performed to synthesize the local indicator varia- tions shows that the local breakup and freeze-up indicators have greater spatial variability than corresponding metrics based on regional ice coverage. However, the trends towards earlier breakup and later freeze-up are unmistakable over the post-1979 period in the synthesized metrics of coastal breakup and freeze-up and the corresponding regional ice coverage. The findings imply that locally defined indicators can serve as key links between pan-Arctic or global indica- tors such as sea ice extent or volume and local uses of sea ice, with the potential to inform community-scale adaptation and response. 
    more » « less